Polarized ³He Source Development at MIT

- Development of a design concept to produce polarized
 ³He⁺⁺ using existing EBIS
- In the process of putting together a laboratory on the MIT campus to support the realization of this source

Charles Epstein and Richard Milner

Work supported by:

- The DOE Office of Nuclear Physics, R&D Program for Next Generation Nuclear Physics

 Accelerator Facilities

 With thanks to: I Alassi, G. Col
- MIT Department of Physics

With thanks to: J Alessi, G Collier, D. Kleppner, P-J Nacher, A Pikin

Motivation

- Polarized ³He is an effective polarized neutron: magnetic moment approximates that of free neutron so existing spin manipulation in RHIC, which was designed for protons, will also work for polarized ³He
- With polarized ³He beams in RHIC, new, high-energy QCD studies via polarized neutron collisions become possible
- Tests of the standard model in a new electron-ion collider eRHIC become possible

History

- 8 particle μA, 10% polarization ³He⁺
 - Rice University, 1969 (Metastability exchange optical pumping)
- 50 particle nA, 65% polarization ³He⁺
 - University of Birmingham, UK, 1973 (Lamb-shift)
- 100 particle nA, 95% polarization ³He⁺
 - Laval University, Canada, 1980 (Stern Gerlach method)

Another Approach

- 8μA, 10% polarization
- Singly charged
- Rice Univ., 1969

FIG. 1. Schematic view of apparatus used to produce a beam of polarized He³ ions and to measure their polarization. A description of this figure is given in the text. The part of the drawing showing the optical pumping cell, the gap lens, and the einzel lens is approximately to scale.

Goal

- $\approx 3x10^{12}$ /sec (500 particle nA), 70% polarized ³He⁺⁺ into RHIC
- To produce a polarized ³He⁺⁺ source using the existing Electron Beam Ionization Source (EBIS) at BNL
- Requires a source of polarized ³He atoms which are directed into the EBIS
- Pulsed structure: ≈ 1 second pulse, ≈ 3 seconds off

Metastability Exchange Optical Pumping

Colegrove, Schearer, and Walters 1963

Mature technology

- Can deliver highly polarized ($\approx 90\%$), pure samples of $\approx 10^{18}$ atoms of 3 He gas in ≈ 10 seconds.
- Commercially available, powerful lasers at 1.083 μm
- Nuclear and particle physics targets developed (Caltech, MIT, Mainz) and successfully utilized (MIT-Bates, NIKHEF/AmPS, DESY/HERMES, Mainz)
- Used in medical imaging (Mainz) and as a neutron polarizer (ILL)

MEOP at High Magnetic Field

Developed in the last decade for medical applications

EUROPHYSICS LETTERS

15 November 2004

Europhys. Lett., **68** (4), pp. 480–486 (2004) DOI: 10.1209/epl/i2004-10237-y

High nuclear polarization of ³He at low and high pressure by metastability exchange optical pumping at 1.5 tesla

M. ABBOUD¹(*), A. SINATRA¹(**), X. MaÎTRE², G. TASTEVIN¹ and P.-J. NACHER¹

¹ Laboratoire Kastler Brossel, Ecole Normale Supérieure 24 rue Lhomond, 75005 Paris, France(***)

² U2R2M, Université Paris-Sud and CIERM, Hôpital de Bicêtre 94275 Le Kremlin-Bicêtre Cedex, France(**)

MEOP at High Magnetic Field

Fig. 5 – (a) Steady-state polarization, and (b) polarization build-up time constant, as a function of 3 He pressure P, at high and low magnetic fields. Circles and stars are 1.5 T data obtained with a broad-band (2 W) and single-mode (0.5 W) pump lasers, respectively. Filled (open) symbols are for weak (strong) discharge: $T_1 = 300$ (60), 2600, 1600 (325), and 1300 (700) s for 1.33, 8, 32, and 67 mbar, respectively. Triangles, squares, and diamonds are low-field data published in [5,6], and [7], respectively (all for weak discharges).

Electron Beam Ionization Source

FIGURE 3. A detailed schematic of EBIS

- 5T Solenoidal field
- 1.5 m ion trap

- 10A of 20 keV electrons
- 575 A/cm² current density

Electron Beam Ionization Source

Figure 4. (A) A schematic of the EBIS course. (B) The electric potential along the axis of the source.

Choice of location of pumping cell

Figure 1: The field on the gun side. Units are in mm.

Concept

FIGURE 4. Schematic layout showing definition of variables

- Locate 3 He gas in a glass pumping cell in the fringe field of the EBIS solenoid (field ${}^\sim$ 0.1 Tesla)
- Polarize gas at ~ 1 torr pressure in pumping cell using metastability exchange optical pumping
- Measure polarization in pumping cell using pump-probe technique
- Feed polarized atoms via calibrated leak in pumping cell along tube into EBIS
- Plan to test concept by collecting sample of atoms at end of beam tube and measuring their polarization using NMR

Details

FIGURE 4. Schematic layout showing definition of variables

- $\approx 10^6$ bounces in 1 meter long transfer tube
- Negligible wall depolarization
- Transfer time ≈ 1 msec
- Configure test where polarized atoms are contained in storage cell at the end of the transfer line – can measure the loss of polarization using NMR

³He Polarization Measurement in Pumping Cell

NMR calibration of optical measurement of nuclear polarization in ³He

W. Lorenzon, T. R. Gentile, H. Gao, and R. D. McKeown

W.K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

(Received 29 June 1992)

FIG. 6. Adiabatic fast-passage signal for a 1.0-torr cell of ${}^{3}\text{He}$ ($P_{n} = 64\%$). The solid curve is a fit to a Lorentzian distribution.

Depolarization

- Wall bounces
- Magnetic field gradients

$$\frac{1}{\tau} = \frac{2}{3} \frac{|\Delta B_t|^2}{|B_l|^2} \langle v^2 \rangle \frac{\tau_c}{\omega_0^2 \tau_c^2 + 1}$$

- $\tau = \text{polarization relaxation time}$
- $\Delta B_t = \text{transverse gradient in Gauss/cm}$
- B_l = holding field in Gauss
- $\langle v^2 \rangle$ = mean-squared velocity in cm/s
- $\omega_0 = 3.24 |B_l| \ kHz$ with B_l in Gauss
- τ_c = average time between collisions (sec) $\approx 2.2 \times 10^{-7} p^{-1}$

BNL September 28, 2011

Magnetic Field Gradients

- ≈ 0.1T Field outside EBIS (solenoid fringe)
- Contains strong gradients, depolarization in ≈ 1 second
- Cancellation coil is necessary to prevent quick depolarization

FIGURE 5. Setup schematic (not to scale)

Coil properties

- 6,000 A, 25 cm² (air cooled)
- 45 cm x 50 cm, rectangular
- Relaxation times ~600 seconds (more than sufficient)

Reversing the Polarization

Simultaneously reverse the circular polarization of the pumping light and reverse the polarization of the atoms in the pumping cell via *adiabatic fast passage* NMR in ≈ 1 sec

$$\mathbf{B}_{e} = \begin{bmatrix} B_{0} - \frac{\omega}{\gamma} \end{bmatrix} \mathbf{k}' + B_{1} \mathbf{i}'$$

$$\begin{vmatrix} \frac{dB_{0}}{dt} \end{vmatrix} << \gamma B_{1}^{2} \qquad \frac{\gamma}{2\pi} = 3.24 \text{ kHz/G}$$

$$\frac{1}{2\pi} \begin{vmatrix} \frac{dB_{0}}{dt} \end{vmatrix} >> \frac{1}{2\pi} = \frac{1}{2\pi}$$

adiabatic

fast

$$\left| \frac{1}{B_1} \left| \frac{dB_0}{dt} \right| >> \frac{1}{T_1}, \frac{1}{T_2} \right|$$

HEPUP LASER® SERIES

FEATURES

- Output power up to 20W
- · 2GHz linewidth
- Wavelength tuning up to 90GHz
- External fine frequency control up to 2.5kHz
- Linearly polarized
- Pure Gaussian beam
- Output fiber for monitoring
- Robust and reliable
- Turn key system

Powerful and compact sources are desirable for massive production of ³He gas.

A new generation of fiber lasers is now available. The master oscillator power amplifier design relies on the use of a seed fiber laser which has adjusted linewidth of 1.8GHz to achieve optimum pumping of ³He and ⁴He atomic transitions.

Atomic Processes in EBIS

- Ionization in EBIS: 10¹⁰ MeV/sec deposited by the electron beam
 100x the power needed to fully ionize all extracted ions

 3He will be fully ionized in EBIS to 3He++
- What processes inside EBIS can cause depolarization?
- Charge exchange: ${}^{3}\text{He}^{+} + {}^{3}\text{He}^{++} \rightarrow {}^{3}\text{He}^{++} + {}^{3}\text{He}^{+}$
 - $-\sigma \approx 10^{-16} \, \text{cm}^2$, approximate rate $10^7 \, \text{s}^{-1}$
- **Recombination**: $e^{-} + {}^{3}He^{++} \rightarrow {}^{3}He^{+}$, which can depolarize
 - Radiative 3-body process: unlikely
 - Factor of $1/\alpha^2$, $\sigma \le 10^{-20}$ cm²
- Spin-exchange collisions:
 - For H, $\sigma = 10^{-14}$ cm²; He^{++/}He⁺ should be much lower
- Are there other processes?

Major tasks ahead

- Polarize sealed cells: V≈100cm³ to P≈80%
- Develop feed system with a calibrated leak
- Develop pump-probe measurement of polarization
- Construct test at BNL using EBIS solenoid
- Measure polarization of sample of atoms using NMR

Summary

- Concept developed to deliver polarized ³He atoms to the existing EBIS with high polarization at the required flow rate
- With careful location and configuration of the polarized atom source depolarization effects estimated to be small
- Source construction getting underway with goal to carry out test on EBIS solenoid
- Post-doctoral research support critical to make progress in a timely way.